Quantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-variables Models
نویسندگان
چکیده
We consider the problem of estimating quantile regression coefficients in errors-in-variables models. When the error variables for both the response and the manifest variables have a joint distribution that is spherically symmetric but is otherwise unknown, the regression quantile estimates based on orthogonal residuals are shown to be consistent and asymptotically normal. We also extend the work to partially linear models when the response is related to some additional covariate.
منابع مشابه
Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors
In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...
متن کاملComposite quantile regression for linear errors-in-variables models
Composite quantile regression can be more efficient and sometimes arbitrarily more efficient than least squares for non-normal random errors, and almost as efficient for normal random errors. Therefore, we extend composite quantile regression method to linear errors-in-variables models, and prove the asymptotic normality of the proposed estimators. Simulation results and a real dataset are also...
متن کاملبهکارگیری متغیرهای پنهان در مدل رگرسیون لجستیک برای حذف اثر همخطی چندگانه در تحلیل برخی عوامل مرتبط با سرطان پستان
Background and Objectives: Logistic regression is one of the most widely used generalized linear models for analysis of the relationships between one or more explanatory variables and a categorical response. Strong correlations among explanatory variables (multicollinearity) reduce the efficiency of model to a considerable degree. In this study we used latent variables to reduce the effects of ...
متن کاملA Partially Linear Censored Quantile Regression Model for Unemployment Dura- tion
Censored Regression Quantile (CRQ) methods provide a powerful and flexible approach for the analysis of censored survival data when standard linear models are felt to be appropriate. In many cases however, greater flexibility is desired to go beyond the usual multiple regression paradigm. One area of common interest is that of partially linear models, where one (or more) of the explanatory vari...
متن کاملESTIMATING THE PARAMETERS OF A FUZZY LINEAR REGRESSION MODEL
Fuzzy linear regression models are used to obtain an appropriate linear relation between a dependent variable and several independent variables in a fuzzy environment. Several methods for evaluating fuzzy coefficients in linear regression models have been proposed. The first attempts at estimating the parameters of a fuzzy regression model used mathematical programming methods. In this the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997